Diterpenoid Alkaloids from Aconitum Nagarum var. Lasiandrum

Jin Yan Dong¹*, Zi Yan Li², Liang Li³

¹Key Laboratory of Fermentative engineering of industrial microbiology, Yunnan University, Kunming 650091
² Department of Environmental Engineering, Kunming Institute of Science and Technology, Kunming 650093
³Department of Chemistry, Yunnan University, Kunming 65009

Abstract: Two new diterpenoids, nagadine 1 and 14-benzoylsachaconitine 2 were isolated from the roots of *Aconitum nagarum*. Their structures were elucidated as 1 and 2 on the basis of spectral analysis.

Keywords: Aconitum nagarum, diterpenoid, alkaloid, nagadine, 14-benzoylsachaconitine.

Aconitum species have been used as a traditional chinese medicine having analgesic activity. Several groups ¹⁻³ have studied the components of the roots of Aconitum nagarum var. lasiandrum W.T. Wang. Further chemical investigation of this plant led to isolate two new diterpenoid alkaloids, nagadine 1 and 14-benzoylsachaconitine 2. This type of norditerpenoid alkaloid has not been reported before.

Nagadine **1,** $[\alpha]_D^{255} + 43.0$ (c, 0.00273, CHCl₃), was isolated as white amorphous powder. The HREIMS of **1** exhibited the [M]⁺ peak at m/z 391.2382 corresponding to the molecular formula $C_{22}H_{33}NO_5$ (calcd. 391.5044). Spectral data indicated the presence of hydroxyl groups, an azomethine (-N=C) (IR: 3300~3600 and 1633cm⁻¹,respectively) and three methoxyl groups (δ_H : δ_3 .31, 3.30 and 3.22, each 3H, s). The ¹HNMR spectrum of **1** showed no signals for NCH₃ or NEt groups, and a broad singlet at δ 7.24 was consistent with the presence of C (19)-azomethine⁴. The doublet at δ 165.0 was assigned to C (19) and the downfield signals at δ 47.75 adjacent double bond as N=C (19). Comparison of the ¹³CNMR data of **1** with those of talatisamine⁵ suggested that the three quartet signals at δ 55.9, 56.5, 59.5 in **1** can be assigned to C(1)-OMe, C(16)-OMe, C(18)-OMe, respectively: the secondary carbon signal at δ 75.72 also was assigned to the C-18. The EIMS spectrum of **1** showed a strong [M⁺-31] fragment peak at 360 indicating the C (1)-OMe⁶. Therefore, the structure of nagadine was assigned as **1**.

14-benzoylsachaconitine **2**, $[\alpha]_D^{255}$ +33.3 (c, 0.00466, CHCl₃), was obtained as white amorphous powder. The HREIMS of **2** exhibited the [M]⁺ peak at m/z 495.2945 corresponding to the molecular formula $C_{30}H_{41}NO_5$ (calcd. 495.6556). The ¹HNMR and ¹³CNMR of **2** exhibited the presence of an N-ethyl group (δ_H : 1.03, 3H, t, J=7.1 Hz), a tertiary methyl (δ_H 0.76, δ C26.3), two methoxyl groups (δ_H 3.27 and 3.18, each 3H, s) and a benzoyl group [δ 166.5 (C=O), 132.5 (4'), 130.6 (1'), 129.4 (2',6'), 128.3 (3',5')]. The triplet at δ 5.13 (J=5Hz) can be assigned to the 14 β –H, indicating location of the benzoyl group at C-14. The presence of a methoxy at C-1 was proven by the strong

[M-31]⁺ peak in the EIMS as well as from the 13 CNMR signals at δ 26.63 and δ 37.76 for C-2 and C-3, respectively⁷. The 13 CNMR data of **2** were quite similar to those of sachacontine, except for the extra benzoyl group at C-14; but the 1 HNMR spectrum of **2**, 14 β –H signal appeared at δ 5.13 for **2** instead of δ 4.07 as in sachacontine. Thus, the structure of 14-benzoyl- sachaconitine was assigned as **2**.

carbon	1	2	carbon	1	2
1	84.7 (d)	85.7 (d)	16	82.1 (d)	81.7 (d)
2	25.6 (t)	26.6 (t)	17	62.8 (d)	61.7 (d)
3	27.8 (t)	37.8 (t)	18	75.7 (t)	26.3 (q)
4	47.8 (s)	34.4 (s)	19	164.9 (d)	56.7 (t)
5	46.3 (d)	50.7 (d)	N-CH ₂ CH ₃		49.2
6	25.5 (t)	25.4 (t)	N-CH ₂ CH ₃		13.5
7	42.7 (d)	45.1 (d)	1-OMe		55.9
8	72.3 (s)	73.8 (s)	16-OMe	55.9	56.1
9	52.3 (d)	46.6 (d)	18-OMe	56.5	166.5
10	46.3 (d)	36.4 (d)	14-CO	59.5	130.6
11	50.4 (s)	48.9 (s)	1`		129.4
12	27.3 (t)	28.5 (t)	2`,6`		128.3
13	37.6 (d)	45.1 (d)	3`,5`		132.5
14	75.5 (d)	76.8 (d)	4`		
15	37.8 (t)	40.8 (t)			

Table 1. ¹³CNMR data of 1 and 2 (400MHz, CDCl₃)

References

- 1. H. C. Wang, D. Z. Zhu, Z. Y. Zhao, R. H. Zhu, Huaxue Xuebao, 1980, 38, 475.
- 2. H. C. Wang, Y. L. Gao, Z. S. Xu, R. H. Zhu, Huaxue Xuebao, 1981, 39, 869.
- 3. S. Y. Chen, S. H. Li, X. J. Hao, Acta. Bot. Sin., 1986, 28, 86.
- 4. X. Y. Wei, S. Y. Chen, Acta. Bot. Yunnan, 1989, 11, 453.
- V. Boido, O. E. Edwards, K. Handa, R. J. Kolt, K. K. Purushothaman, Can. J. Chem., 1984, 62, 778
- 6. M. S. Yunusov, S. Y. Yunusov, Khim. Prir. Soedin., 1969, 515.
- 7. S. W. Pelletier, M. M. Badavi, *Heterocycles*, 1985, 23, 2873

Received 17 April 2000